Data Detective Work: How Life Sciences Companies Can Use Affiliations Data to Track Non-Traditional Healthcare Services
August 2023
Identifying the most actionable physicians and institutions for potential adoption and
uptake of novel therapeutic products requires thoughtful and tailored marketing
strategies. Traditionally, target lists of individuals are typically generated through
a combination of patient-level claims and sales data. However, the growth of
non-traditional healthcare settings (e.g., outside of the office or hospital setting)
with limited capture in foundational data sources muddies the waters for identifying
relevant stakeholders and presents challenges to optimizing targeting strategy.
During a recent Fierce Life Sciences webinar,
experts from ClearView and Compile discussed several novel methods to address key
challenges for targeting in non-traditional markets. Take a look at the below case
studies, demonstrating the importance of affiliations data to overcome incomplete
patient capture in atypical care settings.
Case Study #1: Comprehensive Capture of Health Care Provider (HCP) Targets for Psychedelic-Assisted Therapy
Renewed interest in psychedelics as potential treatments for mental illnesses and
disorders requires creative approaches for commercialization in today’s healthcare
environment. Psychedelic-assisted therapies for PTSD require the co-localization of
talk therapists and psychiatrists, posing a unique challenge in care delivery.
Additionally, many of these HCPs have practices that are fully cash-pay, and are not
captured in traditional data sources (e.g., patient-level claims). Hence, identifying
compelling HCP and institutional targets for commercialization is increasingly challenging.
Adding provider affiliations data, enhanced with information from CMS open payments,
PubMed, clinical trial registries, and more, to claims data is key for identifying a
more comprehensive list of provider targets with high accuracy and high coverage.
Utilizing these enhanced data sources, the universe of potential psychedelic-assisted
therapy targets is substantially enhanced and broadened. In the below real-world example
for PTSD targets, we were able to identify almost four times as many target HCPs using
provider affiliations coupled with claims than with claims data alone.
Incorporating Novel Datasets More Accurately Matches Reality

Case Study #2: Prioritizing Settings of Care in the COVID Market
The landscape for COVID oral antiviral prescribing is diverse and evolving, occurring
across a multitude of different settings. To design optimal targeting strategies in this
market, it is important for manufacturers to understand which are the largest and most
prominent settings for prescribing, and design targeting strategies around them. However,
Rx claims data lacks insight into the setting in which therapies were prescribed,
creating challenges in quantifying the distribution of oral antiviral prescribing across
sites of care.
Utilizing novel methodologies to (1) link Rx claims to associated Mx claims, and (2)
determine the settings from which the Mx claims were derived, manufacturers can better
estimate the distribution of oral antiviral prescribing volumes across settings.
Rx site of care ID methodology
Paxlovid Site of Care Dec. 2022

Additionally, results from these advanced data analyses can be triangulated with primary
research-driven market sizing efforts to even further increase robustness and accuracy.
Case Study #3: Maintaining Accurate Target Lists in Highly Fluctuating, Seasonal Markets
Maximizing accuracy of target lists is critical, particularly in the limited window of
seasonal primary care markets (e.g., flu, COVID, or allergies, etc.), when HCP receptivity
and interest to engage is high. Nurse practitioners (NPs) and physician assistants (PAs),
two key groups of prescribers in these markets, frequently move between practice settings
during peak seasons, increasingly landing in non-traditional settings (e.g., telemedicine,
etc.). In one analysis, we found that 60% of COVID-treating HCPs changed at least one
affiliation in a three-month period.
Historically, collection of HCP affiliations data has relied on time-consuming, manual phone
and email surveys which leads to dated and unreliable information. However, increasingly novel
data sources are supporting longitudinal tracking and real-time updates of HCPs affiliations
data, allowing for up-to-date information on HCP locations, allowing for capture of movement
to non-traditional settings of care. Leveraging these novel data sources can allow
manufacturers to optimize targeting strategies in real-time for rapidly evolving markets.
Conclusions:
Care delivery services outside the traditional office / hospital setting are fast growing
businesses for providers. Traditional patient-level claims datasets lack the dimensionality
to inform optimal targeting strategies in these markets. However, novel and powerful
next-generation affiliations datasets have the ability to fill many of these gaps.
Interested in learning more? Click here to view
the full webinar.